Ungar’s Theorems on Countable Dense Homogeneity Revisited

نویسنده

  • JAN VAN MILL
چکیده

In this paper we introduce a slightly stronger form of countable dense homogeneity that for Polish spaces can be characterized topologically in a natural way. Along the way, we generalize theorems obtained by Bennett and Ungar on countable dense homogeneity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Open Problems on Countable Dense Homogeneity

We survey recent development in research on countable dense homogeneity with special emphasis on open problems.

متن کامل

On Countable Dense and n-homogeneity

We prove that a connected, countable dense homogeneous space is n-homogeneous for every n, and strongly 2-homogeneous provided it is locally connected. We also present an example of a connected and countable dense homogeneous space which is not strongly 2-homogeneous. This answers in the negative Problem 136 of Watson in the Open Problems in Topology Book.

متن کامل

Some Notes concerning the Homogeneity of Boolean Algebras and Boolean Spaces

In this article we consider homogeneity properties of Boolean algebras that have nonprincipal ultrafilters which are countably generated. It is shown that a Boolean algebra B is homogeneous if it is the union of countably generated nonprincipal ultrafilters and has a dense subset D such that for every a ∈ D the relative algebra B 1 a := {b ∈ B : b ≤ a} is isomorphic to B. In particular, the fre...

متن کامل

Countable dense homogeneity and λ - sets

We show that all sufficiently nice λ-sets are countable dense homogeneous (CDH). From this fact we conclude that for every uncountable cardinal κ ≤ b there is a countable dense homogeneous metric space of size κ. Moreover, the existence of a meager in itself countable dense homogeneous metric space of size κ is equivalent to the existence of a λ-set of size κ. On the other hand, it is consisten...

متن کامل

Homogeneous Countable Connected Hausdorff Spaces

In 1925, P. Urysohn gave an example of a countable connected Hausdorff space [4]. Other examples have been contributed by R. Bing [l], M. Brown [2], and E. Hewitt [3]. Relatively few of the properties of such spaces have been examined. In this paper the question of homogeneity is studied. Theorem I shows that there exists a bihomogeneous countable connected Hausdorff space. Theorems II and III ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008